X
Crash Course 53 Selections in NEET-UG 2013 716 Selections in JEE-Main 2013 103 Selections in JEE-Advanced 2013
Register for Free Demo Class
Name
 
Contact Number
   
Email ID
   
Class
 
City
 
    
Addition of Hydrogen

Hydrogen adds to an alkyne in the presence of a metal catalyst such as palladium, platinum, or nickel in the same manner that it adds to an alkene (Section 4.11). It is difficult to stop the reaction at the alkene stage because hydrogen readily adds to alkenes in the presence of these efficient metal catalysts. The product of the hydrogenation reaction, therefore, is an alkane. Hydrogen adds to an alkyne in presence of metal catalyst lead acetate and quinoline The reaction can be stopped at the alkene stage if a “poisoned” (partially deactivated) metal catalyst is used. The most commonly used partially deactivated metal catalyst is Lindlar catalyst, which is prepared by precipitating palladium on calcium carbonate and treating it with lead(II) acetate and quinoline. This treatment modifies the surface of the palladium, making it much more effective at catalyzing the addition of hydrogen to a triple bond than to a double bond.
Because the alkyne sits on the surface of the metal catalyst and the hydrogens are delivered to the triple bond from the surface of the catalyst, only syn addition of hydrogen occurs (Section 5.19). Syn addition of hydrogen to an internal alkyne forms a cis alkene. Syn addition of hydrogen to an internal alkyne Internal alkynes can be converted into trans alkenes using sodium (or lithium) in liquid ammonia. The reaction stops at the alkene stage because sodium (or lithium) reacts more rapidly with triple bonds than with double bonds. Ammonia (bp = -33 °C) is a gas at room temperature, so it is kept in the liquid state by using a dry ice/acetone mixture (bp = -78 °C) conversion of internal alkynes to trans alkenes The first step in the mechanism of this reaction is transfer of the s orbital electron from sodium (or lithium) to an sp carbon to form a radical anion—a species with a negative charge and an unpaired electron. (Recall that sodium and lithium have a strong tendency to lose the single electron in their outer-shell s orbital; Section 1.3.) The radical anion is such a strong base that it can remove a proton from ammonia. This results in the formation of a vinylic radical—the unpaired electron is on a vinylic carbon. Another single-electron transfer from sodium (or lithium) to the vinylic radical forms a vinylic anion. The vinylic anion abstracts a proton from another molecule of ammonia. The product is the trans alkene. trans alkene formation The vinylic anion can have either the cis or the trans configuration. The cis and trans configurations are in equilibrium, but the equilibrium favors the more stable trans configuration because in this configuration the bulky alkyl groups are as far from each other as possible. cis and trans configuration of vinylic anion

Satisfaction Guaranteed
X

Welcome to Kshitij Education India

Our Guarantee:

We're so sure you'll have the time of your life with us, we back our courses with a 100% Satisfaction Guarantee.

If for any reason you aren't 100% satisfied with your classes in first 7 days, just let us know and we'll refund your fees. No questions asked.

And based on your feedback, we will take the necessary steps to ensure we never repeat any mistakes as such.

Live Chat